Combitronic

™ 通信の紹介

CANバスを使用した高速トランスペアレント通信

ムーグ アニマティクス社は、一体型モータに大幅に進歩した技術を導入しました。Combitronic ™は、(コントローラ・エリア・ネットワーク)の標準インターフェース " CAN "で動作するプロトコルです。それは同時に、 CANopenか DeviceNetのいずれかのプロトコルと共存することが可能です。Combitronic ™は、これらの一般的なプロトコルとは異なり単一の専用のマスターコントローラを必要としません。同じネットワークに接続された各一体型サーボモータは、すべての情報を共有するため、全てのリソースを共有し、対等な立場で通信します。 Combitronic通信は標準のCAN インターフェースを使用し、ほとんどの自動車並びに産業用ネットワークで使用しているCANopenやDeviceNetと同じ基本的なハードウェアです。しかし、これらの共通制御ネットワークとは異なりCombitronic ™にはマスタまたはスレーブがありません。

Combitronic ™インターフェースを装備した場合、SmartMotorの配列は1つの巨大な並列処理システムになります。この強力な技術的の進歩は、集中と分散制御のそれぞれの欠点を排除しながら、どちらかに可能性を開いて、共同の利益を提供します。

  • 機械設計からPLCを排除
  • 又は
  • 特定タスクの負荷を減らすことで、既存のPLCの性能を向上

 

オプションであるCombitronic ™テクノロジーは、あらゆるモータのプログラムを単に他のモータCANアドレスをローカル変数やコマンドにタグ付けすることによって、他のモータから読み取みや書込み又は制御することができます。全てのSmartMotor ™ユニットは、通信コードを一行も書かず又はCANプロトコルの詳細な知識を必要としなくても、1マルチタスク、データ共有システムになります。唯一の前提条件は、一致したボーレートと固有のアドレスを持つことです。

SmartMotor120台までCombitronic技術を使用して単一の配列上にアドレス指定することができます。

Combitronicプロトコルの特徴:



  • 120軸のノード数
  • 1MHzの帯域幅
  • マスタは必要ありません
  • スキャンリスト又はノードのリストの設定は必要ありません
  • 全てのノードは、他の全てのノードへ完全な読み取り/書き込みアクセス権を持っています

例えばSmartMotorは動作プロファイルを開始するのに、単一文字のコマンドを使用します。動作プロファイルをスタートするコードの行は次のようになります。

GローカルモータにGo発行
G:2モータ2にGo発行
G:0ネットワーク上の全てのモータにGo発行
x=PA:5モータ5の現在位置を変数xに割り当てる。

さらに、比較またはポーリングすることで、値の比較はバスを介して行うことができます。

IF PA:3>PA:5モータ3の位置がモータ5の位置を超えた場合
S:3モータ3停止
ENDIF
WHILE IN (4) : 2==0 LOOP モータ2の入力4がhighになるまで待機

 

Benefits

Integrated Servo and network communication technologies are advancing quickly, primarily for the purpose of reducing the complexity of machinery. Fewer components operating more intelligently, and more automatically, deliver many benefits:

1) Reduced Size

Compressing the controls into the motors themselves reduces or eliminates the control cabinet, making the machine much smaller

2) Reduced Cost

Fewer components and no cabinet cut costs dramatically

3) Reduced Development Time

Fewer components to specify, purchase, learn and mount make for dramatically reduced development cycles, getting to market faster, generating revenue sooner and producing a compelling competitive advantage.

4) Reduced Field Service

Machine repair moves from debugging a cabinet full of wires and controls, to a simple component swap of motors and standard cables.

5) Reduced Down-Time

Keeping component spares on-hand can virtually eliminate down-time. A traditional control can only be debugged in the cabinet while the machine is down and the factory processes stopped. An Integrated Motor or simple “Y” cable can be swapped out immediately. The faulty component can be debugged, or simply sent back to the manufacturer for analysis and repair – while the machine continues to produce.

6) Increased Reliability

The fewer components a machine has, the more reliable it is. Also, an Integrated Servo based machine design has considerably less wiring, and wiring is the chief source of failure in most machines.

7) Increased Versatility

A cabinet-based, separate control approach makes machine design change or expansion extremely problematic. Adding additional axes of separate drives, for example, can be difficult where cabinet space is limited, whereas adding additional Integrated Servos is trivial, and with the additional axes, come additional I/O points and additional processing power, automatically.

Integrated Motors are available from Dozens of manufacturers, ranging from very low-cost open-loop step motors to very fast, high-performance closed-loop servos. Different manufacturers offer different slants on the solutions. The integrated motor market segment is growing faster than the general industry and the technology is transforming how equipment is designed, manufactured and supported in the field. The Combitronic function represents a leap as significant as the Integrated Motors themselves.

Linear Interpolation

Animatics has broken down the barrier between multiple integrated motors and introduced a simple command structure that allows any one SmartMotorto command linear Interpolated paths across multiple motors at once.

The Synchronized Motion command set opens the door to direct control without the need for any centralized processor.

The user may command Path Velocity, Acceleration, Deceleration and Target points in 3 Cartesian dimensions.

Dual Axis Example: (Absolute Move)

a=1 b=2 'Motor addresses, x and y
x=123000 'X Axis Target Position
y=20000 'Y Axis Target Position
VTS=100000 'set path velocity
ATS=1000 'set path acceleration
DTS=100 'set path deceleration
PTS(x;a,y;b) 'set 2-axis synchronized target position
GS 'Go, 2-axis linear interpolation
TSWAIT 'Wait until 2 axis move is complete

Dual Axis Example: (Relative Move Syntax)

PTRS(x;a,y;b) 'set 2-axis synchronized Relative Target position


Three Axis XYZ Example

a=1 b=2 c=3 'Motor addresses, x, y and z
x=123000 'X Axis Target Position
y=20000 'Y Axis Target Position
z=8000 'Z Axis Target Position
PTS(x;a,y;b, z;c) 'set 3-axis synchronized target position
GS 'Go, 3-axis linear interpolation
TSWAIT 'Wait until 3 axis move is complete

 

Four Axis X1, X2, Y, Z Example

a=1 b=2 c=3 'Motor addresses, x, y and z
u=4 'Motor address, x slave (parallel X axis)
x=123000 'X Axis Target Position
y=20000 'Y Axis Target Position
z=8000 'Z Axis Target Position
PTS(x;a;u,y;b,z;c) 'set 4-axis including x slave
GS 'Go, 3-axis +slave X axis
TSWAIT 'Wait until all axis move is complete

Synchronized commands allow up to 3 pairs of motors for X, Y and Z for large parallel axis gantry systems with 2 motors per axis:

PTS(x;a;u,y;b;v,z;c;z) 'set 6-axis including x slave, y slave, z slave
GS 'Go, 3-axis primaries x, y, z, + slaves: u, v, and w
TSWAIT 'Wait until all axis move is complete

Supplemental Axis syntax allows for additional motors above and beyond that will start and stop and the exact same time as the main motors: These motors could be rotary axis, pumps, etc….

PTS(x;a,y;b,z;c) 'set 3-axis X, Y, Z
PTSS(j,q) 'set supplemental axis q to j absolute position
PRTSS(k,r) 'set supplemental axis r, k relative distance
GS 'Go, all 5 motors
TSWAIT 'Wait until all moves are complete

RS232

In the event that a PC or HMI is desired to control a large number of SmartMotor servos, but RS232 is desired to save the cost of direct CANbus interfacing to the newtork, any SmartMotor may be used as master access via RS232 to all Combitronic motors on its network. The following demostrat 12 motors in a network where 4 SmartMotors are in a serial daisy chain over RS232. Each of those 4 may have up to 119 motors on its Combitronic network.

The Controlling PC may freely access and control all motors via a single standard RS232 serial port.

Video Demo

Sinusoidal Oscillation Mode

This is a free running cam mode off of an internal virtual axis control. The motors move sequentially, with the farthest left motor as the master, to create a wave motion.

Application: Pressing out large sheets of metal as you move toward the edge or pressing out bubbles in sheet vacuum forming processes.

Short, quick moves in Sinusoidal Oscillation Mode

Showing that a single SmartMotor can control all other SmartMotors separately, sequentially, or globally at the same time.

Application: Mechanical distribution for parts selection, parts transfer and stop gate motion on a conveyor belt or sequential valve control.

Global Addressing with Synch Commands

The master SmartMotor is moving the other five motors together, all starting and stopping at the same time. Synch commands allow for the same start and stop time. The distance they all moved in this example determined ahead of time.

Application: Capping applications or fillings applications

Group Addressing with Synch Commands & Random Number Generator

The SmartMotors have been split of into two groups of three. Each of the two groups has coordinated start and stop times with the Synch commands, but one group moves up while the other group moves down. The distance that the carriage moves along the screw was produced by a random number generator in the SMI program.

Application: Random thread defects in blue jean manufacturing, quality inspection of random pieces traveling down a conveyor belt, or positioning inspection cameras over carpet to check for thread defects.

Documents

Combitronic Technology Documents

Understanding Combitronic Technology Presentation:

 

 

Understanding Combitronic Technology Technical Paper:

 

 

Understanding Combitronic Motor Addressing KB Article:

 

 

Related Manuals